Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
نویسندگان
چکیده
In this study, the microstructure and the mechanical properties of two new biocompatible superelastic alloys, Ti-24Nb-0.5O and Ti-24Nb-0.5N (at.%), were investigated. Special attention was focused on the role of O and N addition on α(″) formation, supereleastic recovery and mechanical strength by comparison with the Ti-24Nb and Ti-26Nb (at.%) alloy compositions taken as references. Microstructures were characterized by optical microscopy, X-ray diffraction and transmission electron microscopy before and after deformation. The mechanical properties and the superelastic behavior were evaluated by conventional and cyclic tensile tests. High tensile strength, low Young's modulus, rather high superelastic recovery and excellent ductility were observed for both superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N alloys. Deformation twinning was shown to accommodate the plastic deformation in these alloys and only the {332}<113> twinning system was observed to be activated by electron backscattered diffraction analyses.
منابع مشابه
Texture investigation of the superelastic Ti-24Nb-4Zr-8Sn alloy
In this work, the influence of crystallographic texture on mechanical properties was investigated by X-ray diffraction in the superelastic Ti-24Nb-4Zr-8Sn alloy. Different textures were obtained by changing the cold rolling reduction rate and the following thermal treatment (solution treatment or flash thermal treatment). The tensile tests performed show that Young’s modulus, elongation at rupt...
متن کاملTi-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model
To ensure the biomechanical properties of Ti-24Nb-4Zr-8Sn, stress-shielding effects were compared between Ti-24Nb-4Zr-8Sn and Ti-6Al-4V fixation by using a porcine model. Twelve thoracolumbar spines (T12-L5) of 12-month-old male pigs were randomly divided into two groups: Ti-24Nb-4Zr-8Sn (EG, n = 6) and Ti-6Al-4V (RG, n = 6) fixation. Pedicle screw was fixed at the outer edge of L4-5 vertebral ...
متن کاملNew intrinsic mechanism on gum-like superelasticity of multifunctional alloys
Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by...
متن کاملThe grain boundary character distribution of a fully-orthorhombic Ti–25Al–24Nb(at.%) alloy
The grain boundary character distribution (GBCD) of a fully-orthorhombic (O) Ti–25Al–24Nb (at.%) microstructure was investigated using electron backscatter diffraction (EBSD). The fine-grained (GS=17 lm) equiaxed microstructure was processed by hot forging and hot-rolling operations performed below the body-centered cubic (bcc) phase transus temperature followed by heat treatment in the O-phase...
متن کاملIn vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.
The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 9 شماره
صفحات -
تاریخ انتشار 2012